Product of Dirichlet Series
Theorem
Let \(f\) and \(g\) be arithmetic functions and consider the Dirichlet series'
\[ \sum_{n = 1}^\infty \frac{f(n)}{n^s} \quad \text{and} \quad \sum_{n = 1}^\infty \frac{g(n)}{n^s}.\]
Formally, their product is given by
\[ \left(\sum_{n = 1}^\infty \frac{f(n)}{n^s}\right)\left(\sum_{n = 1}^\infty \frac{g(n)}{n^s}\right) = \sum_{k = 1}^\infty \frac{(f \ast g)(k)}{k^s}\]
and this product converges absolutely if both series converge absolutely.
Proof
Formally,
\[\begin{align*}
\left(\sum_{n = 1}^\infty \frac{f(n)}{n^s}\right)\left(\sum_{n = 1}^\infty \frac{g(n)}{n^s}\right) &= \sum_{(m, n) \in \mathbb{Z}_{> 0}^2} \frac{f(n)g(m)}{(nm)^s} \\
&= \sum_{k = 1}^\infty \sum_{\substack{(m, n) \in \mathbb{Z}_{> 0}^2 \\ mn = k }} \frac{f(n)g(m)}{(nm)^s} \\
&= \sum_{k = 1}^\infty \frac{1}{k^s} \sum_{\substack{(m, n) \in \mathbb{Z}_{> 0}^2 \\ mn = k }} f(n)g(m) \\
&= \sum_{k = 1}^\infty \frac{1}{k^s} \sum_{n \mid k} f(n)g\left(\frac{k}{n}\right) \\
&= \sum_{k = 1}^\infty \frac{(f \ast g)(k)}{k^s}. \\
\end{align*}\]
If both series converge absolutely, then the convergence of the formal series follows from this result.